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Summary. Using the Z-vector formalism the analytical gradient of the energy in 
the half-electron open-shell treatment is derived and implemented for semiempir- 
ical MNDO-type methods. The computation time is shown to scale as O(N 3) with 
the size of the system, with the memory requirements growing as O(N2). The 
evaluation of the analytical gradient is significantly faster than the half-electron 
SCF calculation, so that routine full geometry optimizations become possible for 
large open-shell systems. The approach can easily be extended to the treatment 
of the small CI expansions typically encountered in semiempirical computations. 
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1 Introduction 

MNDO [1], AM1 [2], and PM3 [3] are widely used in theoretical studies of 
molecular structure and reactivity, particular in organic chemistry [4-6]. The 
recently proposed MNDO/d method [7-10] promises an improved semiempir- 
ical description of inorganic compounds including hypervalent molecules and 
transition metal complexes. Applications of these MNDO-type methods usually 
involve explorations of multidimensional potential surfaces which are greatly fa- 
cilitated if the gradient of the energy with respect to the nuclear coordinates can 
be evaluated efficiently. 

For closed-shell restricted Hartree-Fock (RHF) wavefunctions, analytic gra- 
dients have long been available in MNDO [11], but a simple finite-difference 
procedure with a constant density matrix and recalculated two-center integrals is 
also efficient. In both cases, the computational effort for the gradient scales as 
O(N 2) with the number of basis functions (N), compared with a formal scaling 
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of O(N 3) for the RHF treatment. Analogous remarks apply to the unrestricted 
Hartree-Fock (UHF) method which has therefore been quite popular in semiem- 
pirical studies of open-shell systems. However, despite its variational nature and 
its efficiency, the UHF approach cannot be considered entirely satisfactory be- 
cause the UHF wavefunction is generally not an eigenfunction of the S 2 operator. 
Moreover, in certain cases, semiempirical UHF calculations may exaggerate cor- 
relation effects and thus yield artificially low energies for open-shell species [12] 
which causes an imbalanced description of closed-shell and open-shell regions 
on a given potential surface. 

The exact RHF treatment of open-shell systems [13] is more complicated 
than the usual closed-shell RHF procedure. The approximate half-electron RHF 
method [14], on the other hand, is conceptually simple [15] and easily imple- 
mented, but analytical gradient evaluation is more difficult than in the case of the 
exact variational RHF treatment [13]. The first derivatives of the half-electron 
energy are closely related to the energy gradient in configuration interaction (CI) 
and multiconfigurational self-consistent-field (MCSCF) approaches which have 
received considerable attention at the ab initio level (see Refs. [16-20] for re- 
views). Analytical first derivatives of the half-electron energy have been derived 
in a recent semiempirical study [21] as the limiting case of small CI expansions. 
The proposed algorithm [21] exhibits an O(N 4) execution time, however, so that 
the gradient evaluation remains the time-determining step for large molecules, in 
comparison with the energy evaluation that scales as O(N3). 

The present paper introduces a more efficient formulation of the analytical 
energy gradient in semiempirical half-electron RHF calculations. Section 2 con- 
tains the theoretical derivations, section 3 describes the implementation of the 
new formalism for MNDO-type methods (including MNDO/d), and section 4 
reports on the performance obtained with this implementation. 

2 Theory 

In the exact open-shell RHF treatment, the electronic energy is given by [22]: 

EROHF = Z ni H ii + Z ( aij Jij + bij Kij ) , 
i ij 

(1) 

where ni is the average occupation number of the i-th molecular orbital (MO), aij 
and bij are constants characteristic of the structure of the open shell, and Hii, Jij 
and K U are one-electron, Coulomb and exchange integrals over the corresponding 
MOs, respectively. The open-shell MOs are determined by a variational mini- 
mization of EROHF. In the half-electron approach, this is replaced by a variational 
minimization of a simpler quasi closed-shell expression: 

1 
ER = Z rtiOii + ~ Z ninj (2Jij - Kij) . 

i O 
(2) 
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The electronic energy E#gHF is then obtained by adding a "half-electron correc- 
tion" E HE which corresponds to the difference EROHF -- ER calculated with the 
use of the half-electron MOs. 

HE EHE EI~OH F = ER + . (3) 

This electronic energy is non-variational because the exact energy expression, 
Eq. (1), is evaluated from MOs that minimize Eq. (2). The errors caused by this 
approximation are known to be small in a semiempirical framework [23]. The 
variational energy contribution ER in Eq. (3) has the same form as the closed- 
shell energy expression. Its geometrical derivatives are well-known [11,24,25] 
and reduce to a simple sum of atom pair contributions in the MNDO case. 
Therefore, only the derivatives of the non-variational correction E HE need to be 
considered here. 

Expressions for E HE have been reported for several important cases [14, 26-  
28]. The correction can always be written as a linear combination of the Coulomb 
and exchange integrals over the orbitals in the open shells: 

open open 

EHE = Z hrsJrs + Z grsKrs . (4) 
r<_s r<s 

The coefficients hrs and 9rs for the simplest cases are given in Table 1. 

Table 1. Weights of the Coulomb and exchange integrals in the half- 
electron correction E rm [14, 26, 27] 

Configuration Multiplicity hrr hrs 9rs 

~r~s 3 --1/4 0 --1/2 
~r ±~s  2 -1/16 -1 /4  1/8 
~Os ± ~ r ~  2 -1/16 -1 /4  1/8 
~r 2 -1 /4  
~r~s 1 -1 /4  0 3/2 
~ - ~ 1 1/4 --1 --1/2 
~ + ~  1 1/4 --1 3/2 

The formulation for the general high-spin case [28] considers an arbitrary 
combination of up to triply degenerate open subshells where each open-shell MO 
is characterized by the degeneracy mr _< 3 and the number of a and/3 electrons 
(nff , nr ~, nr = nr ~ ÷ nil) in the corresponding open subshell. The coefficients in 
Eq. (4) are then defined [28] by: 

2 nff n r 
hrr = 9rr - 4m2r I-mr ' (5) 

1 ( n r ( 2 m r - n r )  nr~+nfl ) (6) 
h r s  - -  

mr (mr - 1) \ mr 

1 ( ( n f f _ n f l ) 2  n r ( 2 m r - n r ) )  (7) 
9rs = 2mr(mr - 1) mr ' 
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if the orbitals r and s belong to the same degenerate open subshell (mr = 2, 3 
for Eqs. (6)-(7)), and by 

hrs = 0 ,  (8) 

1 (nr ~ - n i l )  (ns ~ - n i l )  (9 )  9rs - 2mrms 

if they belong to different open subshells. Although only the upper triangles 
of hrs and grs enter Eq. (4), we define hrs and 9rs as symmetric matrices and 
choose grr = hrr which allows an alternative (more symmetric) formulation of 
the half-electron Correction: 

open 
1 EHE = ~ Z (hrsJrs + 9rsKrs) . (10) 

FS 

Static and response parts of  the derivative of the half-electron correction 

Formal differentiation of Eq. (4) or Eq. (10) with respect to the nuclear coordinate 
ra of nucleus A involves the corresponding derivatives of the Coulomb integrals 
Jo and exchange integrals K/] in the MO basis [20]: 

( xa ) d.ra -J i j  +2 pi (jjlip) + E x ~  (ii~p) , (11) 
\ P P 

dT ~ - K~ +2 pi (ij[JP) + E x~j (ij[ip , (12) 
\ P  P 

where xpi denotes the derivative of an orbital coefficient in the basis of the unper- 
turbed MOs, and (/j Ikl) a two-electron MO integral. In MNDO approximation, 
the static parts of the derivatives, Ji] and Ki~, are given by 

A B 

Jij = Z E E (oi iv  A(r + O~aO~v) (~ll, /~0") a , (13) 
BCA I~<v A<cr 

A B 

K/~ = E E E 2 0 ~ , O ~  (]£/-*t, ,~0") a , (14) 
B#A I.*<v A<o" 

0~,  = C~iC~j + (1 - 6~,~,) C~,iCm , (15) 

where C~,i and (>u, A~) a denote the usual LCAO coefficients and the two-electron 
AO integral derivatives, respectively. The static part of the derivative of the half- 
electron correction 

oEHE open open 

COT a static = E hrsJ'a's + ~ grsKa (16) 
r<s r<s 
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can be evaluated easily, with O(N 2) operations and without any storage of AO 
derivative integrals. 

The complete derivative expression contains a static and a response part: 

dE HE OE HE OE HE 

d~ ------2 - ~ static + ~ response " (17) 

The response contribution arises from the second term in Eqs. (11) and (12), 
respectively. Eqs. (10)-(12) and (17) yield: 

0EHE all open 

07 -0 response = E Z qirxia (18) 
i r 
open 

q i r = 2 E ( h r s ( S s l r i ) + g r s ( r s l s i ) )  . (19) 
$ 

The evaluation of the two-electron quantities qir requires all two-electron MO 
integrals (ij Ikl) which involve three or four open-shell MOs. There are O'(N) 
such integrals, each of which can be computed with O(N 2) operations in MNDO 
approximation, so that a straightforward implementation of Eq. (19) results in an 
O (N 3) procedure. 

The first-order orbital coefficients Xi~r in Eq. (18) are the solutions of the 
coupled perturbed Hartree-Fock (CPHF) equations, which are discussed in the 
following section. 

CPHF equations with fractional occupation numbers in MNDO 

Numerous derivations of the first-order CPHF equations are available in the 
literature, e.g. [24, 29-31], so that we focus on the major steps which differ in 
the case of fractional occupation numbers. Although a slightly more compact 
derivation of the CPHF equations is possible with the use of the Derivative 
Hartree-Fock theory [31], the classical approach allows for an easier exposure 
of the computational complexity. 

The classical derivation proceeds as follows: 
- The Fock matrix ~j/j, the orbital coefficient matrix ~ and the orbital energies 

ei are expanded in the basis of the unperturbed molecular orbitals as a function 
of a small perturbation 7-a. 

- These expansions are substituted into the Hartree-Fock equations and the 
orthonormality conditions on the molecular orbitals. 

- The terms that are of first order in 7-a are collected. 
The resulting equations for the first-order orbital coefficients xi~ and energies 

e a in the MNDO approximation are: 

d~j,j (20) 

xij +xj~ = O, (21) 
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d~/,/ 
¢a_ d'r a (22) 

dE The first-order Fock matrix 77r~ depends on the first-order density matrix 
which is linearly related to x/~: 

dP.~, 
d 3 . ~  - Z ( f . i f t , j ' - l - f . j f p i )  ( n i - n j ) x i j  . (23) 

i<j 

The derivative of the MNDO expression for the Fock matrix [1,7] can be parti- 
tioned into a static part (~j/ja) and a response part ( ~ ) :  

d.i. a = ~t] a + , - ~ q ,  (24) 

~iJ a = Z C.i C.] F ~  , (25) 
. u  

Z ( Z  B a )  F~, = P)`~(#u, Act) a - Z~ (#u, qcore) if #, u C A, (26) 
BCA \)`~r6B 

F.u = ~ P)`,r(#u, A(r) a - A a a ZA(]~ll, qcore) if #, U C B # A, (27) 
)`ctEA 

sa 1 F~)` =/3.), .)` - ~ Z Z Pu,7(#u, )tO') a if # E A, A S B # A, (28) 
v6A crEB 

~ J  = Z C.iC.jRa.u , (29) 
.u  

a I)̀ ~Bd~A. ~ dP)`,~, , , R . v = -  ~ (uA, uo )+  Z ~ --d~Tat#U,a~r) i f # , u C A ,  (30) 
B )`(r GB 

1 ~ 
Rau)̀  : --~ Z ~-~ (#u, ao-) if # e A, A e B # A, (31) 

t.'EA aEB 

where the standard MNDO notation [1,7] has been employed for the terms in 
Eqs. (24)-(31). (#u, Aa) a and S~, denote the derivatives of the two-electron in- 
tegrals and the overlap integrals in the AO basis, respectively, with regard to 
%. 

Substitution of Eqs. (23)-(31) into Eqs. (20) and (22) yields two systems 
of linear equations for x~ and e a (CPHF equations). The non-redundant CPHF 
variables are those that appear in the derivatives of the density matrix, Eq. (23), 
i.e. x/~ with i < j and n i ~ nj. Other CPHF variables are redundant in the sense 
that they are available from Eqs. (20) and (22) as soon as the non-redundant 
CPHF variables are known. 

A compact representation of the CPHF equations in MNDO approximation 
a = 0 in MNDO due to Eq. (21) we can be obtained in matrix notation. Since Xii 

may formally introduce the vector X a of unknowns with the components: 
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a (32) x a i i  = c i 
a xaij = xij for i Cj .  (33) 

The CPHF equations can then be written as a single matrix equation 

( F  - K)  N X  a = c ~  TM , (34)  

where F and N are diagonal matrices (see below), K is a square matrix with 
two-electron MO integrals (see below), and . 7  a is a vector containing the static 
Fock matrix derivatives (see Eq. (25)). All vectors and matrices in Eq. (34) have 
compound indices (ij and kl), and their dimension is equal to the number of 
unknowns. They can be partitioned into redundant and non-redundant parts: 

'-rNR 
_r= 

0 

I NNR 
N =  

0 

x a =  

t, a) 

0 

0) 
NR 

, ( 3 5 )  

, (36)  

, (37) 

(38) 

n j  - -  h i )  , 

(NR)i j ,k l  -~ ¢~ik~jl , 

(KNR)/j,kt = (1 -- 6hi,n,) (1 -- ~"k,",) (4 (ij ikl)  - ( ik~l)  - ( i l ~ k ) ) ,  

(KR)O,kt = 6,,,,j (1 --~nk,n,) (4 (/jlk/) - (ikLjl) - ( i l [ j k ) ) ,  

Note that the definition chosen for N ensures that KNR and (F - KN~) are sym- 
metric matrices which is relevant for the actual solution of the linear system (see 
below). By contrast, K is not symmetric because all columns corresponding to 
redundant variables xaij are zero. The formal solution of Eq. (34) can therefore 
be written as: 

(_rR) i i ,k l  = ~i~6jt 

(FR) i i , i i  : 1 , 

( N N R  ) ij ,kl = t~ ik tSj l 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

K = . (39) 
KR 

The definition of F, N and K explicitly accounts for the occupation numbers ( n i ,  

nj, etc.) and, in particular, allows for fractional occupations as they occur in the 
half-electron treatment: 

~ j  - -  ~ i  
( l"NR)i j ,k l  = ~Sik~Jl n j  _ n-~ ' 

( e j - e i )  , i f i C j  
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X~R = NNR -1  (FNR -- KNR) -1  ~NN~ 

X~ = / - ' R - '  (':~RR a + KRNNRX~qR) • 

(47) 

(48) 

Eq. (48) is valid for any subset of redundant variables as long as all non-redundant 
variables are kept. In the following section, we shall consider only the subset of 
redundant variables which belong to the active set (see below). 

Z-vec tor  evaluation o f  the response contributions 

Using the symmetry relation x/~ = - x )  a (see Eq. (21)) which holds in MNDO 
approximation, the response contribution to the derivative of the half-electron 
correction (see Eqs. (18)-(19)) can be rewritten as follows: 

OE HE active set 

QijXaij = Q t X a  , (49) 
response = OT a i<~ 

Qir = qir if i E closed, r E open, (50) 

Qri = --qir if r C open, j E vacant, (51) 

Qrs = qrs -- qsr if r, s E open. (52) 

The active set includes all non-redundant CPHF variables and those redundant 
variables Xars where both r and s refer to an open-shell MO (r < s). The 
other redundant variables do not contribute to the derivative (see Eq. (18)) and 
are therefore excluded. The number of redundant variables in the active set is 
usually rather small, e.g. zero for a nondegenerate doublet and one for the other 
cases in Table 1. 

The two-electron quantities Qij in Eq. (49) are nonzero only if at least one 
of the indices corresponds to an open-shell MO. Since Q is shared between all 
Cartesian derivatives and since different vectors X a enter Eq. (49) linearly, the 
Z-vector technique [32] may be used to improve the computational efficiency. 
However, the direct application of the Z-vector method to Eq. (49) would re- 
quire the solution of the unsymmetrical linear problem (/" - K) t Z = N-1Q. As 
unsymmetrical systems of linear equations are generally handled less efficiently 
than symmetrical ones by the existing iterative algorithms [33], a symmetric 
formulation is desirable. 

Substitution of X a from Eqs. (47-48) into Eq. (49) yields, due to the block 
structure of K: 

QtX a = QtRFR-I,~Ra+ 

Introducing the auxiliary symmetrical linear problem: 

(FNR -- KNR) ~ "  = NNR-1QNR + K R t F R - 1 Q R  , (54) 
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we obtain: 

~sponse = ~-a  = ~t~7"a (55) C~,./_ a FR- QR 

Since Eq. (54) is of the same form as the closed-shell CPHF equations, the 
algorithms employed in the solution of the latter (e.g. [30, 34]) can be directly 
applied to Eq. (54). Finally, substituting the expression for the static derivative 
~ ' a  of the Fock matrix (Eq. (25)) into Eq. (55), and interchanging the summation 
indices, an alternative expression in the AO basis is obtained: 

oEHE response O-ca = Z F~'Zu~" ' (56) 

active set 

Zlz~,.-.~ ~ CiMCuj~ij. (57) 
i<j 

Since the transformation for the static derivative 27 TM of the Fock matrix into 
the MO basis (Eq. (25)) is O(N 3) in MNDO, while the construction of its AO 
representation (Eqs. (26-28)) is only O(N2), the calculation in the AO basis is 
significantly more efficient. 

3 Implementation 

The analytical derivatives of the energy in the half-electron open-shell treatment 
have been implemented in the MNDO94 [35] program. This section describes 
the major steps performed during gradient computation. Actual execution times 
for each step are given in parentheses for illustration (computation of the 3N 
Cartesian derivatives in C15oH30 (see below) on a 100MHz SGI Indigo 2 with 
64MB of main memory): 

1 (30.83s) The required two-center integrals are computed. The static parts 
of the derivatives of the Coulomb and exchange integrals (Eqs. (13-15)), 
the derivatives of the closed-shell energy term ER (Eq. (3)) and the pair 
contributions to the static derivatives of the Fock matrix (Eqs. (26-28)) are 
determined using the derivative two-center AO integrals, which are discarded 
thereafter. 

2 (20.06s) The two-electron quantity Q is evaluated (Eqs. (19, 50-52)) and 
the right-hand side of the auxiliary linear system (54) is constructed. Depend- 
ing on the number of the non-zero redundant components of Q, the vector 
KRtFR-IQR is evaluated by using transformed MO integrals (Eq. (46)), or 
by performing a direct transformation of the two-electron terms employing 

dPAa Eqs. (29)-(31), with ~ replaced by the auxiliary quantity: 

redundant 

t.xa = - ~ (C;~iC~j + C,vC~i ) Qij . (58) 
i<j 
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3 (652.62s) The auxiliary linear system (54) is solved using a modified con- 
jugate gradient algorithm [33, 34]. The conjugate gradient algorithm solves 
a linear system Ax = b by generating a series of the successive approxima- 
tions x (i) to the solution, corresponding residuals r (i) = b - Ax (i) and search 
directions d (i), which are updated on each iteration according to [33]: 

X (i) : X ( i -1)  + s i d  (/) , (59) 

p(i) = Ad(i), (60) 

r (i) = r ( i - l )  --  s / p  (/) , (61) 

d (i) = r (i) + 3 i _ l d  O - l )  . (62) 

The scalars oL i and/5/-1 are selected such that each two subsequent search di- 
rections and residual vectors are orthogonal. For infinitely precise arithmetics, 
it can then be proved that all search directions (and residuals) are mutually or- 
thogonal [33], provided that A is symmetric positive definite. In practice, for 
the linear problems typically encountered in CPHF (e.g., with the dimension 
of 99 852 in the case of C150H3o), the global orthogonality property tends to 
be lost after more than ten iterations. However, this does not result in a sig- 
nificant increase in the number of iterations compared with other algorithms 
[30, 36] which have significantly larger memory requirements. The evalu- 
ation of the response vectors (Eq. (60)) using the transformation to atomic 
orbitals [36] is the most time-consuming part of the above procedure (with 
an execution time of 605.21 sec. in the case of C15oH3o, where 16 response 
vectors are required to converge to 10-Sa.u.). 

4 (33.98s)  The AO representation of the Z vector is computed according to 
Eqs. (55) and (57). 

5 (56.81s) The static derivatives of the Fock matrix in the AO basis are con- 
structed from the stored pair contributions (Eqs. (26-28)) and contracted with 
the Z-vector to give the response part of the derivatives of the half-electron 
correction (Eq. (56)). 

Throughout the code, care is taken to use the BLAS Level 3 routines [37] 
for the major part of the computations which should ensure a near-optimal per- 
formance of the program on most modern computer architectures. 

4 Results and discussion 

To assess the performance of the present implementation relative to the numer- 
ical differentiation and the previously reported analytical implementation [21], 
Cartesian energy gradients were computed for a series of condensed aromatic hy- 
drocarbons [38] in the lowest triplet state, i.e. for C6H6,  C24H12, C54H18, C96H24 

and C15oH3o. The convergence criterion for the SCF energy was 10 -6 e.V., while 
the auxiliary linear system (54) was required to converge to within 10 -5 a.u. En- 
forcing more stringent convergence criteria results in insignificant changes in the 
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Table 2. Comparison of the SCF and gradient computation time# (in seconds) 

97 

System Orbitals SCF Numer ica l  Analytical Analytical 
gradient g rad ien t ,  gradient, 

[21 ]b present work 

C6H6 c 30 0.19 7.71 1.74 0.20 
C24H12 c 108 7.31 714.45 178.95 4.55 
C54H18 c 234 82.18 10484.92 4 116.91 36.49 
C96H24 d 408 605.41 e 100 139.32 221.99 
C150H30 d 630 3 325.14 f f 794.44 

a On an SGI Indigo 2 with a 100MHz R4000 CPU and 64MB of main memory 
b As implemented in the MOPAC7 [39] program 
c At the optimized MNDO geometry 
d At an idealized D6h geometry with RCC = 1.4066/~ and RCH = 1.0904/~ 
e No SCF convergence in the gradient computation 
f Not computed, estimated execution time too large 

computed gradients. The gradient components from all three approaches deviate 
by much less than 1 kcal/Angstrom, and thus need not be shown here. 

The execution times in Table 2 show that, in the present implementation, the 
gradient computation requires only a fraction of  the effort necessary to obtain 
the SCF solution for all test molecules (except C6H6). Employing the conjugate 
gradient algorithm, the memory usage does not depend on the number of  iter- 
ations in the solution of the auxiliary linear system (54). Overall, the memory 
requirements in the gradient evaluation are comparable to those in the SCF treat- 
ment. The combination of high computational efficiency and modest memory 
requirements makes it possible to routinely perform geometry optimizations for 
large open-shell systems where the UHF treatment has previously been the only 
practical alternative. Thus, the full geometry optimization (in Cartesian coordi- 
nates) of  the lowest triplet state of C6o starting from the singlet Ih geometry takes 
990 seconds on a 100MHz Indigo 2 using the half-electron approach, while 1201 
seconds are necessary with the use of  the UHF procedure. 

The previously reported implementation [21] of  analytical gradients employs 
an O(N 4) algorithm, as opposed to the O(N 3) algorithm in the present work. 
This difference causes much lower computation times for the present implemen- 
tation, particularly for the larger molecules (see Table 2), e.g. for C96H24 with 
a speedup factor of about 450. In addition, the relative efficiency of  the previ- 
ous analytical implementation [21] with respect to numerical differentiation was 
found to decrease with the system size, and special care had to be taken to control 
the growth of  the memory requirements with the number of iterations, thereby 
effectively limiting applications in large molecules [21]. 

Although the derivative of  the half-electron correction (4) was the major 
objective of  the present work, the treatment can easily be extended to handle small 
CI expansions typically encountered in semiempirical computations. Since the 
Hellmann-Feynman theorem is rigorously satisfied for the gradient of  a limited 
CI energy expression in an incomplete basis, the gradient can be written as a 
linear combination of  the derivatives of  the two-electron MO integrals and the 
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first-order orbital energies [40]. The static part of the derivative can then be 

computed using Eqs. (13)-(15). The response part reduces to an expression in 

the form of Eq. (49) (although with a different definition for the vector Q), 

provided that the derivatives of the orbital energies are included in the redundant 

set of parameters (Eq. (32)). Hence, the expressions (53)-(57) for the response 

part of the derivative still hold and can be evaluated using the same computer 

program. Therefore, computation of the gradient of the energy in a small MNDO 

CI expansion can be implemented as an O(N 3) process, completely analogous 

to the gradient of the half-electron term. Work along these lines is in progress. 

5 Conclusion 

The Z-vector formulation of the analytical derivatives of the energy in the 

semiempirical half-electron open-shell treatment provides a substantial increase 

in the computational efficiency over both the numerical and the conventional 

analytical implementation. The computation time formally scales as O(N 3) with 

the size of the system, and is typically a small fraction of the SCF computation 

time, with memory requirements growing as O(N2). The methodology can easily 

be extended to cover small CI expansions. 
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